$$
\begin{align*}
& \underline{{ }_{9} R_{3,0}^{\prime}}=\frac{\sigma_{4}^{1 / 2}}{8 C_{1} \sigma_{2}}\left(2 C_{1}-C_{2}\right)\left(\mathscr{E}_{\mathbf{h}_{1}}^{\circ 2}+\mathscr{E}_{\mathbf{h}_{2}}^{\prime 2}+\mathscr{E}_{\mathbf{h}_{1}+\mathbf{h}_{2}}^{\prime 2}\right)+\varrho_{5}, \\
& \underline{{ }_{10} R_{3,0}^{\prime}}=\frac{7 \sigma_{4}^{1 / 2}}{8 C_{1} \sigma_{2}}\left(2 C_{1}-C_{2}\right)\left(\mathscr{E}_{\mathbf{h}_{1}}^{\prime 2}+\mathscr{E}_{\mathbf{h}_{2}}^{\prime 2}+\mathscr{E}_{\mathbf{h}_{1}+\mathbf{h}_{2}}^{\prime 2}\right)+\varrho_{6}, \\
& \underline{{ }_{11} R_{3,0}^{\prime}}=\frac{\sigma_{4}^{1 / 2}}{8 C_{1} \sigma_{2}}\left(2 C_{1}-C_{2}\right)\left(\mathscr{E}_{\mathbf{h}_{1}}^{\prime 2}+\mathscr{E}_{\mathbf{h}_{2}}^{\prime 2}+\mathscr{E}_{\mathbf{h}_{1}+\mathbf{h}_{2}}^{\prime 2}\right)+\varrho_{7}, \\
& { }_{12} R_{3,0}^{\prime}= \\
& \frac{7 \sigma_{4}^{1 / 2}}{8 C_{1} \sigma_{2}}\left(2 C_{1}-C_{2}\right)\left(\mathscr{E}_{\mathbf{h}_{1}}^{\circ 2}+\mathscr{E}_{\mathbf{h}_{2}}^{\prime 2}+\mathscr{E}_{\mathbf{h}_{1}+\mathbf{h}_{2}}^{\prime 2}\right)+\varrho_{8},
\end{align*}
$$

and

$$
\underline{{ }_{13} R_{3,0}^{\prime}}={ }_{11} R_{3,0}^{\prime} .
$$

In order to summarize the relations among the correction terms for the various space groups in type $3 P_{2}$, it is convenient to make the identification,

$$
\begin{align*}
& R \equiv R^{(0)} \\
& R^{\prime} \equiv R^{(1)}
\end{align*}
$$

Thus, for space groups, $R \overline{3}, R \overline{3} m$ and $R \overline{3} c$,

$$
R_{i, 0}^{(j)}={ }_{1} R_{i, 0}^{(j)} ; \quad j=0, \mathbf{l} ; \quad i=2,3 .
$$

For space groups, $P m 3, P n 3$ and $P a 3$,

$$
R_{i, 0}^{(i)}={ }_{1} R_{i, 0}^{(j)}+{ }_{9} R_{i, 0}^{(j)} ; \quad j=0,1 ; \quad i=2,3 .
$$

For space groups, $P m 3 m, P n 3 n, P m 3 n$ and $P n 3 m$,

$$
R_{i, 0}^{(j)}={ }_{1} R_{i, 0}^{(j)}+{ }_{10} R_{i, 0}^{(j)} ; \quad j=0,1 ; \quad i=2,3 .
$$

For space groups, $F m 3$ and $F d 3$,

$$
R_{i, 0}^{(j)}={ }_{1} R_{i, 0}^{(j)}+{ }_{11} R_{i, 0}^{(j)} ; \quad j=0,1 ; \quad i=2,3 .
$$

For space groups, $F m 3 m, F m 3 c, F d 3 m$ and $F d 3 c$,

$$
R_{i, 0}^{(j)}={ }_{1} R_{i, 0}^{(j)}+{ }_{12} R_{i, 0}^{(j)} ; \quad j=0,1 ; \quad i=2,3 .
$$

Finally, for space groups $F m m m$ and $F d d d$,

$$
R_{i, 0}^{(j)}={ }_{1} R_{i, 0}^{(j)}+{ }_{13} R_{i, 0}^{(j)} ; \quad j=0,1 ; \quad i=2,3 .
$$

Note that ${ }_{1} R_{2,0},{ }_{1} R_{3,0},{ }_{1} R_{2,0}^{\prime}$ and ${ }_{1} R_{3,0}^{\prime}$ are defined in $1 P$ (1959).

The remainder terms in the basic formulas are especially simple for the special case $p=q=r=2$. For this case, the formulas reduce to those obtainable by the algebraic methods proposed by us (1957).

References

Hauptman, H. \& Karle, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. Monograph No. 3. New York: Polycrystal Book Service.
Hauptman, H. \& Karle, J. (1957). Acta Cryst. 10, 267. Hauptman, H. \& Karle, J. (1959). Acta Cryst. 12, 93. Karle, J. \& Hauptman, H. (1957). Acta Cryst. 10, 515. Karle, J. \& Hauptman, H. (1959). Acta Cryst. 12, 404.

The Crystal Structure of $\mathbf{K}_{\mathbf{5}} \mathbf{H g} \mathbf{g}_{7}$

By E. J. Duwell* and N. C. Baenziger
State University of Iowa, Iowa City, Iowa, U.S.A.

(Received 2 July 1959)
$\mathrm{K}_{5} \mathrm{Hg}_{7}$ has an orthorhombic unit cell with $a=10 \cdot 06, b=19 \cdot 45, c=8 \cdot 34 \AA, Z=4$, space group, Pbcm. The intensity data were obtained from Weissenberg and precession photographs of single crystals. The structure was determined by Patterson and electron-density methods and refined by the leastsquares method. The $\mathrm{K}_{5} \mathrm{Hg}_{7}$ structure results from that of KHg_{2} (a distorted AlB_{2} structure) by replacing one-eighth of the Hg atoms by potassium atoms.

Introduction

The crystal structure of $\mathrm{K}_{5} \mathrm{Hg}_{7}$ is the fourth of a series of potassium amalgams whose structures have been determined. KHg_{11} is isotructural with BaHg_{11}, whose structure was reported by Peyronel (1952). The structures of KHg_{2} and KHg were reported by Duwell \& Baenziger (1955).

Due to the stoichiometry of KHg_{11} the mercury

[^0]atoms form a three-dimensional net which encompasses the potassium atoms. In the KHg and KHg_{2} structures, although not required by stoichiometry, the Hg atoms tend to group together. In KHg , the Hg atoms form nearly planar square groups of four which are strung together in chains by bonds between corners of the square groups. In KHg_{2} the mercury atoms form puckered hexagonal layer nets-a distortion of the $\mathrm{NaHg} \mathrm{N}_{2}\left(\mathrm{AlB}_{2}\right)$ ideal structure type. The $\mathrm{K}_{5} \mathrm{Hg}_{7}$ structure reported below results from the KHg_{2} structure by replacing every eighth mercury atom by a potassium atom in a regular way.

X-ray diffraction methods and data

Single crystals of $\mathrm{K}_{5} \mathrm{Hg}_{7}$ were made and isolated by the method described in the previous paper (Duwell \& Baenziger, 1955). Zero through third layer Weissenberg diagrams were made of the ($h k 0$) zone with $\mathrm{Cu} K$ radiation and zero and first level precession camera photographs were made of the (0 kl) zone with Mo K radiation. The intensities were estimated by the visual comparison method. The Weissenberg data were affected by absorption errors to a greater extent than the precession camera data, but absorption corrections were not made because of the irregular shape of the crystal.

The unit cell is orthorhombic with

$$
\begin{gathered}
a=10 \cdot 06, b=19 \cdot 45, c=8 \cdot 34 \AA \\
V=1632 \AA^{3}, \quad D_{x}=6 \cdot 51 \mathrm{~g} . \mathrm{cm} .^{-3}, \quad Z=4, \\
D_{m}=6 \cdot 61 \mathrm{~g} . \mathrm{cm} .^{-3} \text { (Mäey, 1899), F.W. }=1599 \cdot 77
\end{gathered}
$$

From the characteristic absences, the space group could be $P b c m$ or $P b c 2_{1}$. Statistical tests of the (0 kl) data indicate the space group Pbcm is more probable. At any rate, this space group was chosen for beginning the structure determination, and a satisfactory structure has been found consistent with this space group.

Structure determination

Patterson projections on (001) and (100) were made. Applying the Patterson superposition technique a plausible structure was found which quickly refined to a discrepancy factor of 0.24 based on mercury atom contributions alone-the contribution of the potassium atoms was not included in the structure factor calculations.

Two-dimensional difference electron-density projections onto (001) and (100) showed peaks which could be interpreted as potassium atoms. The maps also contained additional spurious peaks of about the same magnitude. Inclusion of the potassium atoms in the structure factor calculation based on positions obtained from the difference plots reduced the discrepancy factor to 0.23 for the ($h k 0$) data. Some of the K-K and $\mathrm{K}-\mathrm{Hg}$ interatomic distances seemed abnormally small, so the potassium atom positions were adjusted to make the $\mathrm{K}-\mathrm{K}$ and $\mathrm{K}-\mathrm{Hg}$ distances as near normal as possible within the restrictions imposed by the mercury atom positions. Using these positions the structure factors were calculated for all reflections giving an R factor of 0.23 based on observed reflections only.

At this point a least-squares refinement was carried out, partially using an IBM 650 computer (leastsquares program of Templeton \& Senko modified by Williams \& Fitzwater of the Ames Laboratory), and partially with an LGP-30 computer and a program developed in our laboratory. In all, the refinement was carried out through six cycles with observed reflections only. An additional cycle was calculated with both observed and unobserved reflections, the
unobserved reflections being given a lesser weight if the calculated F values were less than the minimum F observable. The observed intensity data estimated from each layer line of the Weissenberg or precession camera were treated independently, and a scale factor was refined for each independent set of data.

Table 1. Atomic positions

$8 \mathrm{Hg}_{1}$ in $(e): \begin{array}{r} \pm \\ \\ \\ \\ z\end{array}$	$\begin{aligned} & \pm\left(x, y, z ; \bar{x}, \bar{y}, \frac{1}{2}+z ; x, \frac{1}{2}-y, \bar{z} ; \bar{x}, \frac{1}{2}+y, \frac{1}{2}-z ;\right) \\ & \quad \text { with } x=0 \cdot 1994 \pm 5, y=0 \cdot 0274 \pm 5, \\ & \quad z=0 \cdot 0646 \pm 16, B=2 \cdot 70 \pm 20 . \end{aligned}$	
$8 \mathrm{Hg}_{2}$ in (e): \quad with	$\begin{aligned} & \text { with } x=0.6790 \pm 4, y=0.1194 \pm 4 \\ & z=0.5708 \pm 15, B=2.29 \pm 18 . \end{aligned}$	
$8 \mathrm{Hg}_{3}$ in (e): \quad wit	$\begin{aligned} & \text { with } x=0.3737 \pm 4, y=0 \cdot 1399 \pm 5, \\ & z=0.5708 \pm 16, B=2 \cdot 56 \pm 19 . \end{aligned}$	
$4 \mathrm{Hg}_{4}$ in $(c): \begin{array}{r} \pm \\ B\end{array}$	$\begin{aligned} & \pm\left(x, \frac{1}{4}, 0 ; x, \frac{1}{4}, \frac{1}{2} ;\right) \text { with } x=0.8701 \pm 8 \\ & B=4.60 \pm 43 . \end{aligned}$	
$4 \mathrm{~K}_{1}$ in (d): \pm	$\begin{aligned} & \pm\left(x, y, \frac{1}{4} ; \bar{x}, \frac{1}{2}+y, \frac{1}{4} ;\right) \text { with } x=0 \cdot 559 \pm 4 \\ & y=0 \cdot 220 \pm 4, B=3 \cdot 64 \pm 1 \cdot 96 \end{aligned}$	
$4 \mathrm{~K}_{2}$ in (d): $\quad \begin{aligned} & \text { wi } \\ & B\end{aligned}$	$\begin{aligned} & \text { with } x=0.538 \pm 3, y=0.017 \pm 4, \\ & B=1 \cdot 44 \pm 1 \cdot 82 \text {. } \end{aligned}$	
$4 \mathrm{~K}_{3} \quad$ in $(d): \quad \begin{aligned} & \text { w } \\ & B\end{aligned}$	$\begin{aligned} & \text { with } x=0.174 \pm 3, y=0.210 \pm 3 \\ & B=0.37 \pm 1 \cdot 08 \end{aligned}$	
$4 \mathrm{~K}_{4} \quad$ in (d): $\quad \begin{aligned} & \text { w } \\ & \\ & \end{aligned}$	$\begin{aligned} & \text { with } x=0 \cdot 009 \pm 4, y=0 \cdot 398 \pm 4 \\ & B=3 \cdot 65 \pm 2 \cdot 08 \text {. } \end{aligned}$	
$4 \mathrm{~K}_{5}$ in (d): $\quad \begin{aligned} & \text { w } \\ & \\ & \end{aligned}$	with $x=0.896 \pm 3, y=0.083 \pm 3$, $B=1 \cdot 48 \pm 1 \cdot 43$.	
	R_{1}°	R_{1}^{\prime}
0kl	0.139	$0 \cdot 139$
$1 k l$	$0 \cdot 122$	$0 \cdot 131$
$h k 0$	0.179	$0 \cdot 188$
$h k 1$	0.087	0.207
$h k 2$	$0 \cdot 177$	$0 \cdot 185$
$h k 3$	0.206	0.213
Total	$0 \cdot 163$	$0 \cdot 174$

Table 2. Interatomic distances

Atom	Neighbor	Distance	Atom	Neighbor	Distance
Hg_{1}	Hg_{2}	3.022 A	Hg_{2}	Hg_{2}	2.989 Å
	Hg_{1}	$3 \cdot 092$		Hg_{1}	$3 \cdot 022$
	Hg_{3}	3.106		Hg_{3}	$3 \cdot 097$
	K_{5}	$3 \cdot 52$		K_{2}	$3 \cdot 52$
	K_{4}	3.56		K_{3}	$3 \cdot 61$
	K_{5}	$3 \cdot 59$		K_{1}	$3 \cdot 61$
	K_{4}	$3 \cdot 62$		K_{1}	$3 \cdot 63$
	K_{2}	$3 \cdot 74$		K_{2}	$3 \cdot 95$
	K_{3}	$3 \cdot 88$		K_{4}	$4 \cdot 02$
	K_{2}	$3 \cdot 89$			
Hg_{3}	Hg_{3}	3.092	Hg_{4}	$2 \mathrm{Hg}_{3}$	$3 \cdot 239$
	Hg_{2}	3.097		$2 \mathrm{~K}_{1}$	$3 \cdot 80$
	Hg_{1}	3.106		$2 \mathrm{~K}_{4}$	$3 \cdot 82$
	Hg_{4}	$3 \cdot 239$		$2 \mathrm{~K}_{5}$	3.86
	K_{1}	$3 \cdot 52$			
	K_{5}	$3 \cdot 52$			
	K_{2}	$3 \cdot 62$			
	K_{4}	$3 \cdot 66$			
	K_{1}	$3 \cdot 67$			
	K_{2}	$3 \cdot 74$			
K_{1}	$2 \mathrm{Hg}_{3}$	$3 \cdot 52$	K_{2}	$2 \mathrm{Hg}_{3}$	$3 \cdot 62$
	$2 \mathrm{Hg}_{2}$	$3 \cdot 62$		$2 \mathrm{Hg}_{2}$	$3 \cdot 62$
	$2 \mathrm{Hg}_{2}$	$3 \cdot 63$		$2 \mathrm{Hg}_{1}$	$3 \cdot 74$
	$2 \mathrm{Hg}_{3}$	$3 \cdot 67$		$2 \mathrm{Hg}_{3}$	$3 \cdot 74$
	$2 \mathrm{Hg}_{4}$	$3 \cdot 80$		K_{5}	3.83
	K_{3}	$3 \cdot 88$		$2 \mathrm{Hg}_{1}$	3.89
	K_{2}	$3 \cdot 95$		K_{1}	$3 \cdot 95$
	$2 \mathrm{~K}_{1}$	$4 \cdot 33$		$2 \mathrm{~K}_{2}$	$4 \cdot 29$

Table 2 (cont.)

Atom	Neighbor	Distance
K_{3}	$2 \mathrm{Hg}_{2}$	$3 \cdot 61$
	$2 \mathrm{Hg}_{4}$	$3 \cdot 78$
	$2 \mathrm{Hg}_{2}$	$3 \cdot 85$
	$2 \mathrm{Hg}_{1}$	$3 \cdot 88$
	$\mathrm{~K}_{1}$	$3 \cdot 88$
	$\mathrm{~K}_{4}$	$4 \cdot 02$
	$2 \mathrm{~K}_{3}$	$4 \cdot 39$
$\mathrm{~K}_{5}$	$2 \mathrm{Hg}_{3}$	$3 \cdot 52$
	$2 \mathrm{Hg}_{1}$	$3 \cdot 52$
	$2 \mathrm{Hg}_{1}$	$3 \cdot 59$
	$\mathrm{~K}_{3}$	$3 \cdot 73$
	$\mathrm{~K}_{4}$	3.73
	$\mathrm{~K}_{2}$	3.83
	$2 \mathrm{Hg}_{4}$	$3 \cdot 86$

Atom	Neighbor	Distance
K_{4}	$2 \mathrm{Hg}_{1}$	3.56
	$2 \mathrm{Hg}_{1}$	3.62
	$2 \mathrm{Hg}_{3}$	3.66
	$\mathrm{~K}_{5}$	3.73
	$2 \mathrm{Hg}_{4}$	3.82
	$2 \mathrm{Hg}_{2}$	4.02

The final positions of the atoms together with the standard errors in the coordinates are listed in Table 1. In the refinement step including the absent reflection data, contributions to the discrepancy factor R_{1}^{\prime} are made only if F_{c} is greater than the minimum F_{o}. For the ($h k l$) data the minimum F_{o} value was set apparently too low. The total number of absent reflections in this group was larger than the number of present reflections. The R_{1}^{\prime} value is much greater than the R_{1}° value, based on observed reflections only, because of the large number of absent reflections which made small contributions to the numerator, but none to the denominator.

Fig. 1. The NaHg_{2} structure-small atoms are Hg .

Discussion of the structure

In the $\mathrm{NaHg}_{2}, \mathrm{LaHg}_{2}$ and UHg_{2} structures (Fig. 1), Hg atoms form regular hexagonal nets with a $\mathrm{Hg}-\mathrm{Hg}$ distance in the net of about $2.9 \AA$, and a $\mathrm{Hg}-\mathrm{Hg}$ distance between nets of $3 \cdot 2 \AA$. This is in contrast to the metal borides (see Laves (1956) or Pearson (1958) for a listing of AlB_{2} phases) which have the same structure with a larger axial ratio so that the interlayer $B-B$ distances are about double the intralayer $B-B$ distances. In the distorted KHg_{2} structure (Fig. 2) the intralayer distances have increased to about $3 \cdot 0 \AA$ and the interlayer distances decreased to $3 \cdot 1 \AA$. In $\mathrm{K}_{5} \mathrm{Hg}_{7}$ (Fig. 3), the vestiges of the layers have $\mathrm{Hg}-\mathrm{Hg}$ distances of $3 \cdot 03,3 \cdot 11,3 \cdot 19,3 \cdot 23$ whereas the interlayer distances are as low as $2.99 \AA$. In all cases, the alkali-alkali distances are considerably shorter than in the pure alkali metal, although since the error in these distances is large, a detailed discussion of these distances would not be significant.

Fig. 2. The KHg_{2} structure.
Of the substances known to crystallize in the AlB_{2} type, the c / a ratio is 1.00 or greater when the B element is trivalent such as B or Ga (exception $\mathrm{Th}_{\mathrm{Al}}^{2}$ with $c / a=0.95$). The compounds with much smaller c / a ratios, all have B elements which have d orbitals available for use in bonding. The $s p^{2}$ type of hybridization which is a natural description for the borides and

Fig. 3. The $\mathrm{K}_{5} \mathrm{Hg}_{7}$ structure.
gallides can be supplemented by $d s^{2}$ hybridization possible for the Hg, Cu, and U cases. Utilization of d orbitals in bonding would permit interlayer bonding as well as intralayer bonding-this type of directed bonding is apparently so favored in the Hg compounds that it persists in KHg_{2} in spite of distortion and in $\mathrm{K}_{5} \mathrm{Hg}_{7}$ in spite of a considerable composition change.

The authors gratefully acknowledge support from the National Science Foundation, Grant G1864, for work on intermetallic compounds and Grant G6085, which enabled the computations to be performed on the LGP-30 computer.

The authors wish to thank Mr D. Williams, Dr D. R. Fitzwater and Prof. R. E. Rundle of Iowa State College for their assistance with the IBM 650 calculations.

References

Duwell, E. J. \& Baenziger, N. C. (1955). Acta Cryst. 8, 705.
Laves, F. (1956). Theory of Alloy Phases, p. 166. Amer. Soc. Metals, Cleveland.
Mäey, E. (1899). Z. phys. Chem. 29, 119.
Pearson, W. B. (1958). Handbook of Lattice Spacings and Structure of Metals. New York: Pergamon Press. Peyronel, G. (1952). Gazz. chim. ital. 82, 679.

[^0]: * Present address: Minnesota Mining and Manufacturing Co., St. Paul, Minnesota, U.S.A.

